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Abstract

An r-uniform hypergraph is a hypergraph in which each edge contains
exactly r vertices. Such a hypergraph satisfies the (k, l)-covering prop-
erty, if each k of its edges can be covered using l vertices.

In this thesis we study the transversal number of r-uniform hyper-
graphs satisfying the (k, l)-covering property. Specific regimes of in-
terest include: small l, in particular l = 2, and large l, in particular
l = r.

A special case of our covering property is directly related to the classical
Ryser’s conjecture about the relation between the transversal number
and the matching number of r-uniform r-partite hypergraphs.
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Chapter 1

Introduction

Many combinatorial problems can be formulated as finding the cover num-
ber of a certain hypergraph. Unfortunately, determining the cover number
of hypergraphs is in many cases extremely difficult. In this thesis we prove
bounds for r-uniform hypergraphs satisfying a certain natural property, but
before we start we will first introduce the terminology used in this thesis.

1.1 Hypergraphs

Formally, a hypergraph is a pair of sets (V, E), where each element of E is a
subset of V. The elements of V are called vertices, while the elements of E
are called edges.

Note that usual graphs are precisely
those hypergraphs in which each
edge contains exactly two vertices. We
call these 2-uniform hypergraphs. In
general an r-uniform hypergraph is a hy-
pergraph in which each edge contains
exactly r verices.

Many properties of graphs can be ex-
tended to hypergraphs. The general-
ization of a bipartite graph is an r-
partite hypergraph. This is a hyper-
graph whose vertex set can be parti-
tioned into r vertex classes such that
no edge contains more than one ver-
tex from each vertex class.

Figure 1.1: Tripartite 3-uniform
hypergraph. Edges are depicted
with ellipses and vertex classes
with colours.

The complete r-uniform hypergraph on n vertices, denoted Kr
n, is the hyper-
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1. Introduction

graph consisting of n vertices and all possible edges of size r.

Kr
n = ([n], {S ⊆ [n] : |S| = r})

1.2 Covers

A transversal, or cover, of a hypergraph H = (V, E) is a set of vertices T ∈ V
meeting every edge in E. The transversal number τ(H) of H is the size of
the smallest such set. Note that this is an extension of the cover number of
graphs.

The transversal number can also be viewed as the solution to the following
discrete optimisation problem.

τ(H) = min ∑
v∈V

xv

s.t. xv ∈ {0, 1} ∀v ∈ V,

∑
v∈E

xv ≥ 1 ∀e ∈ E

Here, xv is the indicator variable of the transversal.

If we apply an LP-relaxation, i.e. don’t require the xv’s to be integer, we
obtain the so-called fractional cover number, which we will denote by τ∗(H).

τ∗(H) = min ∑
v∈V

xv

s.t. 0 ≤ xv ≤ 1 ∀v ∈ V,

∑
v∈E

xv ≥ 1 ∀e ∈ E

In this case multiple vertices can jointly “cover” an edge when their com-
bined weight is at least 1. Observe that the fractional cover number can
never be greater than the transversal number. However it can sometimes be
smaller as shown in the example below.

Figure 1.2: Graph with cover number 2 and fractional cover number 1.5

2



1.3. Matchings

Fractional cover numbers are sometimes easier to work with. For example,
fractional cover numbers are computable in polynomial time, while finding
the transversal number is NP-hard. This follows from the NP-completeness
of determining the vertex cover number, see Karp [7].

1.3 Matchings

Another property which can be extended to hypergraphs is the matching
number. Just like in the 2-uniform case, a matching is a set of disjoint edges
and the matching number maximal size of such a set.

ν(H) = max ∑
e∈E

ye

s.t. ye ∈ {0, 1} ∀e ∈ E,

∑
v∈e

ye ≤ 1 ∀v ∈ V

Here, ye is the indicator variable of the matching. This is again an integer
linear program and one may consider an LP-relaxation giving rise to the
following fractional matching problem:

ν∗(H) = max ∑
e∈E

ye

s.t. 0 ≤ ye ≤ 1 ∀e ∈ E,

∑
v∈e

ye ≤ 1 ∀v ∈ V

Note that xv ≤ 1 for all v ∈ V and ye ≤ 1 for all e ∈ E are redundant
constraints and omitting them gives two dual linear programs. By strong
duality,

ν(H) ≤ ν∗(H) = τ∗(H) ≤ τ(H).

Transversals and matchings of hypergraphs are closely related. For example,
the union of any maximal matching is a transversal.

1.4 (k, l)-Covering property

We say a hypergraph H satisfies the (k, l)-covering property, or for short that
H is a (k, l)-hypergraph, when any k edges of H can be covered using l
vertices. The main problem of this thesis is to determine the maximum
transversal number an r-uniform (k, l)-hypergraph can have, for a variety of
regimes of r, k and l.

hr(k, l) = max
H∈r-uniform (k,l)-hypergraphs

τ(H)

3



1. Introduction

If no maximum exist, we say hr(k, l) = ∞.

The problem was introduced by Erdős et al. [6] and recently used to solve
problems about partitioning random graphs into monochromatic compo-
nents by Bucić et al. [4].

A variation on this problem additionally requires the hypergraph to
be r-partite. In that case we denote the maximum transversal number
with hr

r(k, l).

1.5 Outline

We will now give a brief overview of the rest of this thesis.

In chapter 2 we will give an overview of some important results in the area
of hypergraph coverings from Kőnig’s theorem and Ryser’s conjecture up
recent work.

In chapter 3 we bound the size of complete r-uniform (k, l)-hypergraphs:
the lower bound using a greedy algorithm and the upper bound using a
construction.

In chapter 4 we will calculate hr(k, l) explicitly for the values it is known:
l = 1, l = 2∧ k ≤ 6, k = l + 1 and k = l + 2.

In chapter 5 we construct a new hypergraph, with the the edges of the
original hypergraph as its vertices and show how this can be used to find
another bound for complete graphs.

In chapter 6 we will calculate and compare upper and lower bounds on
hr(k, l) for the special case r = l.

In chapter 7 we will discuss how this all relates to Ryser’s conjecture, a
famous open problem.

4



Chapter 2

Previous Results

In this chapter we will briefly describe various key papers and results in the
area.

2.1 Kőnig’s theorem ’31

One of the first important results in the history of coverings is Kőnig’s theo-
rem [13], also known as the Kőnig-Egerváry theorem and sometimes spelled
with an umlaut.

Theorem 2.1 (Kőnig) If a graph is bipartite, then its matching number equals its
cover number.

The proof from Kőnig’s book used alternating paths. However, we will give
an alternative proof using the max-flow-min-cut theorem.

Proof Let G = (V1 ∪ V2, E)
be a bipartite graph with ver-
tex classes V1 and V2. We
construct a new graph G′ by
adding two vertices s and t,
joining s with all vertices in A
and joining t with all vertices
in B. Observe that the max-
flow from s to t equals the
matching number of G, while
the min-cut equals the cover
number of G. By the max-flow-
min-cut theorem these two
quantities are equal. �

Figure 2.1: Bipartite graph with min-
imum cut/cover (red) and maximum
flow/matching (purple)
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2. Previous Results

2.2 Ryser’s conjecture ’71

A generalisation of Kőnig’s theorem to hypergraphs is Ryser’s conjecture,
which describes the relationship between the transversal number τ and
matching number ν of r-uniform r-partite hypergraphs.

Conjecture 2.2 Let H be an r-uniform r-partite hypergraph. Then

τ(H) ≤ (r− 1)ν(H).

This conjecture is often attributed to a paper of Ryser [15], but accord-
ing to Best and Wanless [3] it was first published in the PhD thesis of
Henderson [12].

The case of 3-uniform tripartite hypergraph has attracted a lot of attention
over the years. The trivial bound of 3ν was improved to 25

9 ν by Szemerédi
and Tuza in 1982 [17], then to 8

3 ν by Tuza in 1987 [18], to 5
2 ν by Haxell in

1995 [11] and finally to the optimal bound 2ν by Aharoni in 2001 [1].

We will discuss Ryser’s conjecture, including Aharoni’s proof for r = 3, in
chapter 7.

2.3 Lovász’ integrality gap ’75

Another big result in the area comes from Lovász [14]. He proves the ratio
between the transversal number and the fractional cover number does not
exceed 1+ ln d, where d is the maximum degree of the graph. The fractional
cover number is easier to compute, because it is an LP, as seen in section 1.2.
We will now explain the proof from the paper.

Theorem 2.3 (Lovász) Let H be a hypergraph of maximum degree d, transversal
number τ and fractional cover number τ∗. Then τ ≤ (1 + ln d)τ∗.

Proof The proof makes use of the “greedy cover algorithm”. This algo-
rithm constructs a transversal by starting with the empty set and repeatedly
adding the vertex which is in most uncovered edges until all edges are cov-
ered.

The first vertex covers exactly d edges. Thereafter, the number of new edges
each new vertex covers is non-increasing. We define ti to be the number of
vertices of the transversal which cover i new edges. Note that

τ ≤ t1 + · · ·+ td and |E| = t1 + 2t2 + · · ·+ dtd.

The fractional cover number on the other hand satisfies τ∗ ≥ |E|/d, since
the maximum degree is d and thus every vertex can cover at most d edges.

6



2.4. Fractional Ryser’s conjecture ’88

Let Ei be the set of uncovered edges after ti+1 + · · · td steps. Note that the
hypergraph spanned by those edges has maximum degree i giving us the
equations

|Ei| = t1 + 2t2 + · · ·+ iti and τ∗ ≥ |Ei|/i.

Taking appropriate linear combinations we find

τ ≤ t1 + · · ·+ td =
t1 + · · ·+ dtd

d + 1
+

d

∑
i=1

t1 + · · ·+ iti

i(i + 1)

≤ dτ∗

d + 1
+

d

∑
i=1

τ∗

i + 1
≤ (1 + ln d)τ∗. �

2.4 Fractional Ryser’s conjecture ’88

A weaker version of Ryser’s conjecture, which bounds the fractional cover
number, was proven by Füredi [10] and earlier by Gyárfás (cited in [9]).

Theorem 2.4 Let H be an r-uniform r-partite hypergraph. Then

τ∗(H) ≤ (r− 1)ν(H).

2.5 Erdős, Hajnal and Tuza’s problem ’91

The main focus of this thesis is the problem introduced by Erdős, Hajnal
and Tuza in [6].

Question 2.5 Let H be an r-uniform hypergraph such that any k edges of H can
be covered using l vertices. What is the maximal transversal number H can have?

Several values were found for small l, which we will discuss in chapter 4.

In 2019 the parameter hr(k, l) was rediscovered by Bucić, Korándi and Su-
dakov [4] in the context of covering edge coloured random graphs with
monochromatic trees. In this context l = r is the relevant case, which we
will discuss in chapter 6.
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Chapter 3

Complete Graphs

Recall that a hypergraph G satisfies the (k, l)-covering property, if every
k edges can be covered by l vertices. Let Kr

n be the complete r-uniform
hypergraph on n vertices. In this chapter we will prove bounds on the size
of complete uniform (k, l)-hypergraphs.

Note that property (k, l) is trivially satisfied when (n
r) < k (because the graph

has less than k edges) or k ≤ l (since we can pick a vertex for each edge).

3.1 Small cases l = 1 or r = 1

We will discuss these cases separately, because they can be determined ex-
actly and addressing them here will simplify our proofs later on.

Proposition 3.1 Let k, l, n, r ∈N with (n
r) ≥ k > l ≥ 1.

(a) Kr
n satisfies (k, 1) if and only if n < kr

k−1 .

(b) K1
n never satisfies (k, l).

Proof

(a) Suppose n < kr
k−1 . Then (n− r)k < n. For any k edges e1, ..., ek, we have

|e1 ∩ ...∩ ek| = n− |eC
1 ∪ ...∪ eC

k | ≥ n− k(n− r) > 0

So there exists a vertex which covers all k edges and Kr
n satisfies (k, 1).

Suppose n ≥ kr
k−1 . Then (n− r)k ≥ n. We pick k edges whose comple-

ments cover all n vertices: ei = {i(n− r) + 1, ..., (i + 1)(n− r)}C (vertices
mod n). Every vertex is in the complement of some edge, so we cannot
cover all edges with a single vertex. Therefore Kr

n does not satisfy (k, 1).

(b) We can never cover k distinct edges of size 1 (i.e. vertices) using l < k
vertices. �

9



3. Complete Graphs

3.2 Lower bound

Theorem 3.2 Let k, l, n, r ∈N with n < rl
ln k . Then Kr

n does satisfy property (k, l).

Proof Consider k edges of Kr
n. We will use the greedy algorithm where we

keep picking the vertex which covers most uncovered edges. Let ai be the
number of uncovered edges after selecting i vertices. Note that

a0 = k and ai+1 ≤ ai −
⌈

ai · r
n− i

⌉
=

⌊
ai ·

n− i− r
n− i

⌋
≤ ai ·

n− r
n

.

By induction on m

am ≤
⌊

k ·
(

1− r
n

)m⌋
≤ bke−rm/nc.

Substituting n < rl
ln k gives al = 0. Therefore l vertices suffice to cover all k

edges. �

3.3 Upper bound lemma

A graph which doesn’t satisfy property (k, l), contains a subhypergraph of
k edges with transversal number greater than l. In the following lemma we
construct such subhypergraphs with high transversal number.

Lemma 3.3 Let n, r, k, l, a, b ∈ N such that r ≥ a, n ≥ d r
ae · b, k ≥ (b

a) and
l ≤ b− a. Then Kr

n does not satisfy property (k, l).

Proof First, we partition the vertices of Kr
n into b sets of at least d r

ae vertices
each. We then pick an edge in the union of each a of these sets such that it is
not in the union of any a− 1 sets, obtaining (b

a) edges in total. These edges
cannot be covered by b− a vertices. Therefore Kr

n does not satisfy property
((b

a), b− a). �

Picking suitable values of a and b gives us an upper bound on n of approxi-
mately rl

logl k + r for k ≤ lr and r + l for k > lr.

3.4 Upper bound for relatively small k

Theorem 3.4 Let k, l, n, r ∈N with (n
r) ≥ k > l ≥ 2, r ≥ 2, lr ≥ k ≥ l4 and

n ≥
⌈

r
blogl kc

⌉
(l + blogl kc).

Then Kr
n does not satisfy property (k, l).
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3.4. Upper bound for relatively small k

Proof We prove this case using lemma 3.3, setting a := blogl kc and b :=
l + a. It remains to be proven that k ≥ (b

a), or equivalently k ≥ (b
l).

We will first check the small cases. Note that a ≥ 4.

• If l = 2, then 2a ≤ k and (b
a) = (a+2

a ) = (a+2)(a+1)
2 . Therefore (b

a) ≤ k.

• If l = 3, then 3a ≤ k and (b
a) = (a+3

a ) = (a+3)(a+2)(a+1)
6 . Therefore

(b
a) ≤ k.

• If l = 4, then 4a ≤ k and (b
a) = (a+4

a ) = (a+4)(a+3)(a+2)(a+1)
24 . Therefore

(b
a) ≤ k.

Now suppose l ≥ 5. Substituting a and b into the binomial coefficient gives(
b
a

)
≤
(

b√
a

)a

=

(
b

l
√

a

)a

· la ≤
(

l + a
l
√

a

)a

· k.

It follows that (b
a) ≤ k whenever l + a ≤ l

√
a, which holds if and only if

l(l − 2−
√

l2 − 4l)
2

≤ a ≤ l(l − 2 +
√

l2 − 4l)
2

.

The first inequality holds in our case, since

l(
√

l2 − 4l + 4−
√

l2 − 4l)
2

≤ l√
l2 − 4l

< 3 ≤ a.

If the second inequality doesn’t hold, then a > l(l − 3). In that case the
above bound on (b

a) isn’t very sharp, since a is much larger than l. Using
different inequalities we get(

b
a

)
=

(
b
l

)
≤
(

b√
l

)l

=
bl

la+l/2 · l
a ≤ (a + l)l

la+l/2 · k.

It follows that (b
a) ≤ k whenever a + l ≤ la/l+1/2. Substituting a = l(l − 3)

gives l(l − 2) ≤ ll−2.5, which holds for all l ≥ 4. The inequality also holds
for all higher values of a, since the right-hand side grows faster.

d
da

a + l = 1 ≤ ln l
l

la/l+1/2 =
d
da

la/l+1/2

Here ln denotes the natural logarithm. We conclude that Kr
n does not satisfy

property (k, l). �

Remark 3.5 The bound on n also holds when l2 > k ≥ l, because then Kr
n contains

l + 1 independent edges.

Remark 3.6 When l4 > k ≥ l2, the bound on n holds for l ≥ 4.

Remark 3.7 This bound is not tight in general, see chapter 6.
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3. Complete Graphs

3.5 Exact answer large k

For k > lr we can determine the answer exactly.

Theorem 3.8 Let k, l, n, r ∈N with (n
r) ≥ k > l ≥ 2, r ≥ 2 and k > lr. Then Kr

n
satisfies (k, l) if and only if

n < r + l or (k, l, n, r) ∈ {(5, 2, 4, 2), (9, 2, 5, 3)}.

Proof Note that the theorem holds, when r = l = 2.

Figure 3.1: Edge cases

If n < r + l any l vertices cover all edges.

Otherwise n ≥ r + l and we apply lemma 3.3 on a = r and b = r + l.

If l = 2 and r = 3, then (r+l
r ) = 10. So if k ≥ 10, then Kn does not satisfy

(k, 2) by lemma 3.3. We also know that k > lr = 8. The only remaining case
is k = 9, n ≥ 5. If n = 5, we can cover any nine edges with two vertices
by picking the vertices in the complement of the only absent edge. If n ≥ 6,
this isn’t possible, because the hypergraph

({a, b, c, d, e, f }, {{a, b, f }, {b, c, d}, {a, c, e}, {a, d, e}, {b, e, f }, {c, d, f }})

has transversal number 3.

If l = 2 and r ≥ 4, then (r+l
r ) = (r+1)(r+2)

2 ≤ r2 ≤ 2r < k.

If l = 3, then (r+l
r ) = (r+1)(r+2)(r+3)

6 ≤ 3r + 1 ≤ k.

If l ≥ 4, then (r+l
r ) = (l+1)(l+2)

2 ·∏r
i=3

l+i
i ≤ lr < k.

In these last three cases Kr
n does not satisfy property (k, l), again by

lemma 3.3.

3.6 Connection to codes

We can identify the edges of the hypergraphs on n vertices with codewords
of weight r in {0, 1}n. This gives us constant weight codes or r-out-of-n-
codes. We conjecture that hypergraphs corresponding to efficient constant
weight codes tend to have a high cover number. Constructing such a code
may bring the upper bound closer to the lower bound.

12



Chapter 4

Exact Transversal Numbers

In the next few chapters we will discuss the following problem. Let H be an
r-uniform hypergraph. If any k edges have a transversal of size l, what is
the maximal size hr(k, l) the transversal of H can have?

Calculating hr(k, l) turns out to be difficult. In this chapter we will calculate
hr(k, l) exactly for k = l + 1, k = l + 2 and several small values of l and k for
which the exact value has been determined. In later chapters we will study
the asymptotic behaviour for more general regimes.

k
l

1 2 3 4 5 6 7
1 ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 r ∞ ∞ ∞ ∞ ∞ ∞
3 dr/2e 2r ∞ ∞ ∞ ∞ ∞
4 dr/3e d3r/2e 3r ∞ ∞ ∞ ∞
5 dr/4e d5r/4e d5r/2e 4r ∞ ∞ ∞
6 dr/5e r ? d7r/2e 5r ∞ ∞
7 dr/6e ? ? ? d9r/2e 6r ∞
8 dr/7e ? ? ? ? d11r/2e 7r

Table 4.1: hr(k, l) for small k and l

Note that all hypergraphs automatically satisfy (k, l) for k ≤ l. Therefore the
transversal number of such r-uniform (k, l)-hypergraphs is unbounded.

If k ≥ l + 1 however, then the matching number is at most l and the transver-
sal number is at most rl. Thus hr(k, l) is finite.

13



4. Exact Transversal Numbers

4.1 Case l = 1

In this section we will calculate the transversal number of r-uniform graphs
in which every k edges have a vertex in common. This is a well known result,
found in Füredi [10] for example.

Theorem 4.1 For all r, k ∈N with k ≥ 2 it holds that

hr(k, 1) =
⌊

r− 1
k− 1

⌋
+ 1.

Proof We will construct an example for the lower bound and prove the
upper bound by induction.

4.1.1 Lower bound

An example of an r-uniform (k, 1)-hypergraph with transversal number⌊ r−1
k−1

⌋
+ 1 is the complete r-hypergraph on r + b r−1

k−1c vertices. Every k edges
have at least

r +
⌊

r− 1
k− 1

⌋
− k ·

⌊
r− 1
k− 1

⌋
≥ 1

vertex in common, so it satisfies property (k, 1). Moreover, it has transversal
number b r−1

k−1c+ 1.

4.1.2 Upper bound

We will prove the upper bound by induction.

Induction Basis If any two edges intersect, any edge will be a transversal.
Therefore hr(2, 1) ≤ r =

⌊ r−1
2−1

⌋
+ 1.

Induction Hypothesis For some k ≥ 3 it holds that if any k− 1 edges mutu-
ally intersect, then the transversal number is at most

⌊ r−1
k−2

⌋
+ 1

Induction Step Let H = (V, E) be an r-uniform hypergraph such that any
k ≥ 3 edges mutually intersect. Pick one edge e.

The edges which contain at least r−b r−1
k−1c vertices of e, can be covered using

by any b r−1
k−1c+ 1 vertices of e.

The other edges of E\e restricted to e have size at most r −
⌊ r−1

k−1

⌋
− 1 and

satisfy the (k − 1, 1) property. By the induction hypothesis we can cover
these edges using ⌊

r−
⌊ r−1

k−1

⌋
− 2

k− 2

⌋
+ 1 ≤

⌊
r− 1
k− 1

⌋
+ 1

vertices.

We conclude that hr(k, 1) =
⌈ r−1

k−1

⌉
+ 1 for all k ≥ 2. �
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4.2. Case k = l + 1

4.2 Case k = l + 1

In this section we will prove the formula of Erdős, Fon-Der-Flaass, Kos-
tochka and Tuza [5] for hr(l + 1, l).

Proposition 4.2 For all r, l ∈N we have

hr(l + 1, l) = rl.

Proof Any l + 1 edges can be covered using at most l vertices. So any
matching consists of at most l edges and rl vertices. The vertices of any
maximal matching form a transversal. Therefore hr(l + 1, l) ≤ rl.

The other direction holds, since the complete r-uniform hypergraph
on r(l + 1)− 1 vertices, satisfies property (l + 1, l) and has transversal num-
ber rl. �

4.3 Case k = l + 2

In this section we will discuss the case k = l + 2. Like the the other diagonal
case, there is a nice formula in [5], which is relatively easy to prove.

Proposition 4.3 For all r, l ∈N we have

hr(l + 2, l) =
⌈
(2l − 1)r

2

⌉
.

For the upper bound we will use the following lemma.

Lemma 4.4 For all r, l, k ∈N with k > l we have

hr(k + 1, l + 1) ≤ hr(k, l) + r.

Proof Let H be an r-uniform (k+ 1, l + 1)-hypergraph with transversal num-
ber hr(k+ 1, l + 1). Pick an edge e in H and define H′ to be H with all vertices
of e removed. Note that H′ satisfies property (k, l). It follows that

hr(k + 1, l + 1) = τ(H) ≤ τ(H′) + r ≤ hr(k, l) + r. �

Proof (Proposition 4.3) Combining lemma 4.4 with hr(3, 1) = dr/2e from
theorem 4.1 and using induction on l, we get

hr(l + 2, l) ≤
⌈
(2l − 1)r

2

⌉
.

The other direction holds, because the disjoint union of two complete r-
uniform hypergraph on rl− 1 and r+ dr/2e− 1 vertices respectively satisfies
property (l + 2, l) and has transversal number

r(l − 1) + dr/2e =
⌈
(2l − 1)r

2

⌉
.

�
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4. Exact Transversal Numbers

4.4 Case l = 2

Erdős, Fon-Der-Flaass, Kostochka and Tuza proved hr(k, 2) for k up to 6. In
these cases the complete graph gives the optimal lower bound, while this
is no longer the case for k = 7, see Fon-Der-Flaass [8]. We have shown in
sections 4.2 and 4.3 that hr(3, 2) = 2r and hr(4, 2) = d3r/2e respectively. In
this section we give proofs for k = 5, 6.

4.4.1 Case k = 5

Proposition 4.5 For all r ∈N it holds that

hr(5, 2) = d5r/4e.

Proof For the lower bound we consider Kr
n, the complete r-uniform hyper-

graph on n = r + d5r/4e − 1 vertices. Its transversal number is d5r/4e.

Consider five of its edges e1, e2, e3, e4, e5. We will prove by contradiction that
they can be covered using 2 vertices.

If four of them mutually intersect, then we can cover all five using a ver-
tex from the intersection and a vertex from the remaining edge. This is a
contradiction, so there are at least

5r− 2(r + d5r/4e − 1) = r− 2dr/4e+ 2

vertices with degree 3. If three edges mutually intersect the remaining two
edges must be disjoint; otherwise we pick one vertex in the intersection
of the three edges and one in the intersection of the remaining two edges.
It follows that there are at least three pairs of mutually intersecting edges,
because r− 2dr/4e+ 2− 2(dr/4e − 1) > 0.

If one edge is disjoint to all others, then there exists a vertex of degree at
least 4r/(d5r/4e − 1) > 3. This is contradiction again, so all edges intersect
at least one other edge.

It follows that without loss of generality e1∩ e2∩ e3, e1∩ e2∩ e4 and e1∩ e2∩ e5
are non-empty. In that case e3, e4 and e5 are disjoint, which is a contradiction,
because r + d5r/4e − 1 < 3r.

For the upper bound, let H = (V, E) be an r-uniform (5, 2)-hypergraph. Let
e1 ∈ E. If all edges intersect e1, then e1 is a transversal. Otherwise there
exists an edge e2 disjoint from e1.

Suppose |e2 ∩ e3| > b3r/4c for all e3 disjoint to e1. Then the union of e1 and
any dr/4e vertices of e2 is a transversal, so τ(H) ≤ r + dr/4e = d5r/4e.

Suppose |e2 ∩ e3| ≤ b3r/4c. Any two edges disjoint to e2 ∩ e3 intersect on e1.
We can cover those edges using dr/2e vertices (cf. proof 4.1.2). Therefore
τ(H) ≤ |e2 ∩ e3|+ dr/2e ≤ d5r/4e. �
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4.4. Case l = 2

4.4.2 Case k = 6

Proposition 4.6 For all r ∈N it holds that

hr(6, 2) = r.

Proof For the lower bound we consider Kr
2r−1, the complete r-uniform hy-

pergraph on 2r − 1 vertices. Its transversal number is r. To show that it
satisfies the property (6, 2), we consider the hypergraph H spanned by six
of its edges. The average degree of H is 6r

2r−1 > 3, so there is a vertex with
degree at least four. The two (or less) edges which it doesn’t cover, intersect.
Therefore Kr

2r−1 satisfies (6, 2) and hr(6, 2) ≥ r.

For the upper bound, we prove by contradiction that hr(6, 2) ≤ r. Suppose
H is an r-uniform (6, 2)-hypergraph with transversal number greater than r.

If there exists an edge which intersects all other edges, it is a transversal.
Therefore each edge has an edge disjoint to it. We pick a pair {e1, e2} of
disjoint edges.

Suppose there exists an edge e3 such that |e1 ∩ e3| ≤ r/2 and |e2 ∩ e3| ≤
r/2. Let A ⊇ e1 ∩ e3 and B ⊇ e2 ∩ e3 such that |A| = |B| ≤ r/2. Since
A ∪ B, A ∪ (e2 \ B) and (e1 \ A) ∪ B aren’t transversals, there exist edges e4,
e5 and e6 in (e1 \ A) ∪ (e2 \ B), (e1 \ A) ∪ B and A ∪ (e2 \ B). It follows that
{e1, e2, e3, e4, e5, e6} does not have a transversal of size 2, because no three of
them intersect. This is a contradiction.

Suppose there does not exist an edge e3 such that |e1 ∩ e3| ≤ r/2 and |e2 ∩
e3| ≤ r/2. We say the hypergraph is thick. By theorem 3 of [5] the number
r is odd and the hypergraph is isomorphic to either Kr

2r or two copies of
two disjoint copies of Kr

(3r−1)/2. However these hypergraphs don’t satisfy
(6, 2). �
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Chapter 5

l-Covering Hypergraph

This chapter is about a hypergraph constructed by Bucić, Korándi and Su-
dakov [4] and how it is used to find a lower bound on hr(k, l). Let H = (V, E)
be an r-uniform hypergraph. We define its l-covering hypergraph to be

Hl = (Vl , El) = (E, {{e ∈ E \ S}|S ⊆ V, |S| = l}).

Note that when r = 2 and l = |V| − 3, this is exactly the line graph of H.
We now prove the following connection to the (k, l)-covering property.

Lemma 5.1 Let K(H) be the highest number k such that H satisfies (k, l). Then

τ(Hl) = K(H) + 1.

Proof Consider k elements in E = Vl . They are covered by the set S of l
elements in V, if and only if {e ∈ E \ S} isn’t covered by these vertices in Vl .
Therefore τ(Hl) equals the smallest k such that H doesn’t satisfy (k, l). �

We can use Lovasz’ integrality gap (theorem 2.3) to bound τ(Hl) = K(H)+ 1
by the fractional cover number of Hl .

τ∗(Hl) ≤ K(H) + 1 ≤ (1 + ln ∆(Hl))τ
∗(Hl)

This is useful, because fractional cover numbers are sometimes easier to
work with. When H is complete, we even have an explicit formula for τ∗(Hl),
which we will now prove.

Lemma 5.2 Let H = Kr
n. Then

τ∗(H) =
n! · (n− r− l)!

(n− r)!
.

Proof First note that

|Vl | =
(

n
r

)
and |El | =

(
n
l

)
.
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5. l-Covering Hypergraph

Furthermore, Hl is also (n−l
r )-uniform and (n−r

l )-regular. Therefore its frac-
tional cover number is at least |El |/(n−r

l ). This bound is attained by assign-
ing a weight of 1/(n−l

r ) to each vertex of Hl , because (n
l )/(

n−l
r ) = (n

r)/(
n−r

l ).�

Consequently, the inequality becomes

n! · (n− r− l)!
(n− r)! · (n− l)!

≤ K(Kr
n) + 1 ≤

(
1 + ln

(
n− r

l

))
n! · (n− r− l)!
(n− r)! · (n− l)!

.

Substituting n = τ(Kr
n)+ r− 1 and inverting the right inequality gives a new

lower bound on τ in terms of k, l and r.
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Chapter 6

Bounds for the Case l = r

In this chapter we discuss the bounds for the case l = r. This case is particu-
larly interesting because of its connection to Ryser’s conjecture, see chapter
7.

The following bounds were proven by Bucić, Korándi and Sudakov [4].

Theorem 6.1 Let er ≥ k > r ≥ 2, then

r2

16 ln k
≤ hr(k, r) ≤

16r2 ln 4r
ln k

ln k

The conditions on the parameters can be explained as follows.

• er ≥ k, because hr(k, l) = Θ(r) for k ≥ er.

• k > r, because any hypergraph satisfies (k, r) for k ≤ r.

• r ≥ 2, because h1(k, r) = ∞ whenever k > r.

6.1 Lower bound

Note that the maximal transversal number for complete r-uniform (k, l)-
hypergraphs is a lower bound on hr(k, l). Therefore any lower bound on
that number will also be a lower bound on hr(k, l). In chapter 3 we have
shown that Kr

n satifies (k, l) for any n < rl
ln k . Therefore

hr(k, r) ≥
⌈

r2

ln k

⌉
− r.

This is an improvement by a constant factor for most of the regime. For
values of k greater than er/2, the trivial bound of hr(k, r) ≥ r does best.
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6. Bounds for the Case l = r

6.2 Upper bound for small k

Conversely, any upper bound on hr(k, l) is an upper bound on the maximal
transversal number for complete r-uniform (k, l)-hypergraphs. So the upper
bound from Theorem 6.1 will give a sharper upper bound for complete
graphs in the case l = r ≥ ln k.

6.3 Upper bounds for large k

In the previous section we assumed k ≤ er. For larger k we have an upper
bound of

16r2 ln 4r
lnberc

lnberc = O(r).

If k ≥ (2r
r ), then a different result from [4] says that hr(k, r) = r. Using

Stirling’s formula, we find that hr(k, r) = r for all k ≥ 22r−1/
√

r.

Figure 6.1: Log-log plot of several bounds for the case l = r = 30

22



Chapter 7

Ryser’s Conjecture

Recall that the matching number ν of a hypergraph H is the maximum
number of pairwise disjoint edges, while the transversal number τ is the
size of the smallest set of vertices meeting every edge.

Let H be an r-uniform hypergraph. Since the vertices of any maximal match-
ing cover all edges of H, it holds that τ ≤ rν.

Note that this bound is tight. Take the complete r-uniform hypergraph on
rν + r − 1 vertices for example. It has matching number ν and transversal
number rν.

It is believed that a stronger bound holds, when the hypergraphs are not
only r-uniform, but also r-partite. This is Ryser’s conjecture.

Conjecture 7.1 (Ryser) Let H be an r-uniform r-partite hypergraph with r ≥ 2.
If ν is the maximum number of pairwise disjoint edges in H, and τ is the size of the
smallest set of vertices which meets every edge, then τ ≤ (r− 1)ν.

The case r = 2 is Kőnig’s theorem as discussed in section 2.1. The case r = 3
was proven in 2001 by Aharoni using a generalisation of Hall’s matching
theorem and will be cover in section 7.3. The case r ≥ 4 remains open.

7.1 Lower bound

We prove the lower bound is tight whenever r− 1 is prime by constructing
an example of an r-uniform r-partite hypergraph for which τ = (r− 1)ν.

We will use a projective plane. A projective plane Π is a hypergraph (V, E)
satisfying the following conditions:

(i) every pair of edges intersect in a unique vertex,

(ii) every pair of vertices is incident to a unique edge,
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7. Ryser’s Conjecture

(iii) there are four vertices such that no three of them are incident to a single
edge.

It is a well known fact that there exists a projective plane of size p2 + p + 1
for each prime number p. Let H be such a projective plane minus one
point and any edges going through that point. Note that this hypergraph is
(p + 1)-partite and (p + 1)-uniform. Moreover, it has matching number 1 by
property (i) and transversal number p.

Let H be ν disjoint copies of this truncated projective plane. This new hy-
pergraph H is also p + 1-partite and p + 1-uniform, but it has matching
number ν and transversal number pν. Therefore equality holds whenever
r− 1 is prime.

7.2 Hall’s theorem for hypergraphs

In this section we sketch the proof of the generalisation of Hall’s theorem by
Aharoni and Haxell [2]. To do so we need some new terminology.

Let H = (V, E) be a hypergraph and let H′ ⊆ E. We define the pinning
number πH(H′) to be the size of the smallest set of edges E′ ⊆ E such that
every edge in H′ intersects an edge in E′ (every edge in H′ is “pinned” by an
edge in E′). It is similar to the transversal number, but now we are covering
edges with other edges instead of with vertices.

The matching width mw(H) of a hypergraph H is the maximal pinning num-
ber of its matchings.

mw(H) = max
M matching in H

πH(M)

A system of disjoint representatives is a function f : A → ⋃A such that

∀A, B ∈ A, f (A) ∈ A and (A 6= B =⇒ f (A) ∩ f (B) = ∅).

Theorem 7.2 (Aharoni, Haxell) LetA be a family of hypergraphs. If mw(
⋃B) ≥

|B| for every B ⊆ A, then A has a system of disjoint representatives.

Sketch of proof The proof is a bit long to explain in detail, so we provide a
brief sketch. The main tool used is Sperner’s lemma [16].

Lemma 7.3 (Sperner) Let T be a triangulation of ∆n, the n-dimensional simplex,
and let χ be a colouring of the points of T in n + 1 colours satisfying the following
conditions:

• Each vertex of ∆n is coloured in a different colour.

• The points of T on a face of ∆n are coloured in the colours of the vertices of
that face.
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7.3. 3-Uniform 3-partite hypergraphs

Then there exists a simplex in the triangulation, whose vertices receive all n + 1
colours.

We associate each hypergraph in A with a unique colour. The condition on
the matching width allows us construct a triangulation T of ∆|A|−1 satisfying
the following conditions.

• The points of T on a face of ∆|A|−1 are coloured in the colours of the
vertices of that face.

• Each point of T is associated with an edge of the corresponding colour.

• Edges corresponding to adjacent points are disjoint.

Applying Sperner’s lemma tells us that there are |A| disjoint and distinctly
coloured edges. These form the system of disjoint representatives of A.

To prove Hall’s theorem for G = (V1 ∪V2, E) we set A = {G[N(v)] : v ∈ V1}.

7.3 3-Uniform 3-partite hypergraphs

In this section we present Aharoni’s proof of the r = 3 case of Ryser’s con-
jecture [1].

Theorem 7.4 (Aharoni) Let H be a 3-uniform 3-partite hypergraph. Then

τ(H) ≤ 2ν(H).

The proof uses a deficiency version of theorem 7.2 and was inspired by a
proof of Kőnig’s theorem which used a deficiency version of Hall’s theorem.
So what exactly is deficiency?

The usual Hall’s theorem says that bipartite graph G = (V1∪V2, E) contains
a complete matching from V1 to V2 if and only if |N(S)| ≥ |S| for all S ∈ V1.

The deficiency version says that if |N(S)| ≥ |S| − d for all S ∈ V1, we can
still find a partial matching of size |V1| − d. This d is the deficiency number.

In the generalisation, neighbourhoods become hypergraphs and their sizes
become matching widths. That way the deficiency number of a family of
hypergraphs A becomes

def(A) = max(0, max
B⊆A
|B| −mw(∪B)).

Lastly, the generalisation of the partial matching number is the partial sys-
tem of representatives, which is just the system of representatives of a sub-
family. We will now prove the deficiency version of theorem 7.2

Lemma 7.5 (Aharoni) Let A be a family of hypergraphs. Then A has a partial
system of distinct representatives of size at least |A| − de f (A).
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7. Ryser’s Conjecture

Proof Add the same def(A) new disjoint edges to each hypergraph in A.
This will increase the matching width of each subfamily by exactly def(A).
Now the condition of theorem 7.2 is satisfied, so the new family of hyper-
graphs has a system of representatives. Removing any new edges from the
system of representatives leaves us with a partial system of representatives
of size at least |A| − def(A). �

We will now use this lemma to prove the main theorem.

Proof (Theorem 8.4) Let H = (V1 ∪ V2 ∪ V3, E) be a 3-uniform 3-partite hy-
pergraph. Let A = {{e \ {v} : v ∈ e ∈ E} : v ∈ V1} and note that (partial)
systems of representatives corresponds to matchings. If def(A) = 0, then
ν(H) = |V1| ≥ τ(H) by lemma 7.5. Otherwise we pick a subfamily B ⊆ A
such that mw(

⋃B) = |B| − def(A).

It follows from lemma 7.5 that |A| − def(A) ≤ ν(H). Moreover, note that
τ(
⋃B) ≤ 2mw(

⋃B), since each pinning edge covers two vertices, and
τ(
⋃A \ ⋃B) ≤ |A| − |B|, because we can cover using the first vertex class.

Combining these three equations gives

τ(H) ≤ τ
(⋃
A
)
≤ τ

(⋃
B
)
+ τ

(⋃
A \

⋃
B
)

≤ 2mw
(⋃
B
)
+ |A| − |B| ≤ |A|+ |B| − 2def(A) ≤ 2ν(H),

which concludes the proof. �

7.4 Connection to the main problem

Ryser’s conjecture is equivalent to

hr
r(l + 1, l) ≤ (r− 1)l,

where hr
r(k, l) is defined as the maximal transversal number any r-uniform

r-partite hypergraph satisfying the (k, l) property can have.

Proof Let H be an r-uniform r-partite hypergraph with matching number l.
Then the right-hand side equals (r − 1)ν(H). Since H does not have l + 1
independent edges, it satisfies (l + 1, l). Therefore τ(H) ≤ hr

r(l + 1, l). So
the inequality implies Ryser’s conjecture.

On the other hand, since hr
r(l + 1, l) is bounded, there exists a r-uniform

r-partite hypergraph H′ with matching number at most l and transversal
number hr

r(l + 1, l). Thus Ryser’s conjecture implies

hr
r(l + 1, l) = τ(H′) ≤ (r− 1)ν(H′) ≤ (r− 1)l. �
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7.4. Connection to the main problem

Note that hr
r(k, l) is bounded above by hr(k, l). In particular hr

r(l + 1, l) ≤
lr by proposition 4.2. Conversely any constructions for lower bounds on
hr

r(l + 1, l) to prove Ryser’s conjecture give lower bounds on hr(l + 1, l) as
well.
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[9] Z. Füredi, Maximum degree and fractional matchings in uniform hyper-
graphs, Combinatorica 1, (1981), 155–162.
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