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Abstract

The log-rank conjecture states that the communication complexity of
a 01-matrix is polylogarithmic in its rank. This is related to graph
theory, since we can bound the logarithm of the chromatic number of a
graph by the communication complexity of its adjacency matrix. This
semester paper gives an overview of results in the area, focusing on the
most recent upper bound by Lovett.
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Chapter 1

Introduction

This semester paper is about the relation between the chromatic number of
graphs and the rank of their adjacency matrix. In this paper all graphs are
simple, that is undirected with no loops and no multiple edges. Let us first
quickly review some definitions.

Definition 1.1 (Chromatic Number) Let G be a graph. Its chromatic number
χ(G) is the number of colours needed to colour its vertices in such a way that no
two adjacent vertices have the same colour.

Definition 1.2 (Rank) Let M be a real n × m-matrix. We define rank(M) to be
the maximal number of linearly independent columns over R.

We start by showing that the chromatic number is at most exponential in
terms of the rank.

Lemma 1.3 For every graph G with adjacency matrix A, it holds that χ(G) ≤
2rank(A).

Proof We give two vertices the same colour when they have the same neigh-
bours. In terms of adjacency matrices, this happens when the corresponding
rows are equal. Observe that adjacent vertices always have different colours,
as vertices of simple graphs aren’t adjacent to themselves. It follows that
χ(G) is at most the number of distinct rows in A.

We will now bound the number of distinct rows in A. First, we pick a basis

{A·c1
, A·c2 , ..., A·crank(A)

}

of the column space of A. We then consider the matrix B consisting of these
columns, defined by Bij = Aicj

. Note that B can have at most 2rank(A) differ-

ent rows, since the rows are 01-vectors of length rank(A). As the columns of
B span the column space of A, there exists a real matrix C such that A = BC.
Therefore A has at most 2rank(A) different rows as well. �
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1. Introduction

Now let’s compare the chromatic number and the rank for some familiar
graphs:

• En, the empty graph on n vertices, has χ(G) = 1 and rank(A) = 0.

• Kn, the complete graph on n vertices, has χ(G) = n and rank(A) = n
for all n ≥ 2.

• Kn,m, the complete bipartite graph, on n+m vertices has χ(G) = 2 and
rank(A) = 2.

• In fact, any bipartite graph G has χ(G) ≤ 2, while the rank can get
arbitrarily high.

• The Petersen graph has chromatic number χ(G) = 3 and rank(A) =
10.

• For graphs of up to 8 vertices we have the following bounds on the
chromatic number.

rank(A) 0 1 2 3 4 5 6 7 8

max χ(G) 1 - 2 3 4 5 6 7 8

Note that there are no adjacency matrices of rank 1.

In all of these cases, the chromatic number isn’t much higher than the rank.
It was conjectured by Van Nuffelen in 1976 that χ(G) ≤ rank(A) + 1. This
was later proven wrong by Alon and Seymour in 1989.

From Lemma 1.3 and the Kn example, we now know the upper bound of
the chromatic number lies somewhere between r and 2r, but where exactly?
It was proven by Raz and Spieker in 1993 that it is grows faster than poly-
nomial, but it was only proven in 2013 by Lovett that it grows slower than
exponential.

Lovett’s proof, discussed in chapters 4 and 5, will be the main focus of this
paper. It bounds the communication complexity of a matrix in terms of
its rank, which in turn can be used to bound the chromatic number of the
corresponding graph. The goal of this paper is to explain this proof from a
slightly more graph theoretical perspective, leaving out the communication
complexity part.

Nevertheless, we will briefly discuss the relation between the chromatic
number and communication complexity in chapter 2. In chapter 3, we will
give an overview of related works and describe the proofs of two previous
bounds in detail.
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Chapter 2

Communication Complexity and the
Log-rank Conjecture

So what is communication complexity? Suppose that we have two players,
Alice and Bob, say, and a 01-matrix M with m rows and n columns. Now
Alice is assigned a row i and Bob is assigned a column j. Both players know
what the matrix looks like, but they don’t know which row/column the
other player was assigned. What is the maximum number of bits CC(M)
they have to send to each other to figure out the value of Mij?

This is a bit confusing, so let’s illustrate it with an example of such protocol.
Alice could just sends Bob her index i as a binary number using ⌈log2(m)⌉
bits. Then Bob looks up the value of Mij in the matrix and can send it to
Alice using a single bit. This shows that the communication complexity is
at most O(log(m)).

This strategy is not necessarily optimal. The number of bits needed to send
the choice of row is logarithmic in the number of rows. The same can be
achieved for the columns. However if they work together, they might be
able to use the information they get from each other to send information
more efficiently, especially if the matrix has some ‘nice’ properties. In our
case, we are interested in low-rank matrices. This leads us to the log-rank
conjecture, which was first formulated by Lovász and Saks in 1988.

Conjecture 2.1 (Log-rank Conjecture) There exists a polynomial P such that
the communication complexity of a 01-matrix of rank r is bounded above by P(log(r)).

This is pretty interesting, but how does this relate to the chromatic number?

Lemma 2.2 Let G = (V, E) be a graph with adjacency matrix A. Then

χ(G) ≤ 2CC(A).

Before we present the proof of the lemma, we need two more definitions.
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2. Communication Complexity and the Log-rank Conjecture

Definition 2.3 (Combinatorial Rectangle) A subset X ⊆ V ×W is a combina-
torial rectangle, if X = A × B for some A ⊆ V, B ⊆ W.

Definition 2.4 (Monochromatic) A matrix is monochromatic, if all its entries
are equal.

Proof There exists a scheme of length CC(A) which gives for each input a
stream of communication. We are going to colour the cells of the adjacency
matrix, giving (i, j) and (i′, j′) the same colour if they result in the same
stream of messages.

Suppose (i, j) and (i′, j′) have the same colour. Alice cannot distinguish (i, j′)
from (i, j), while Bob cannot distinguish (i, j′) from (i′, j′). Hence the same
messages are sent and (i, j′) has the same colour as (i, j) and (i′, j′). The
same argument works for (i′, j) and it follows that the colour classes form
combinatorial rectangles.

Note that despite the fact that Alice cannot distinguish between (i, j) and
(i, j′), she does know the correct matrix value in the end. Thus Mij and Mij′

must be equal. Analogously, we find Mij = Mi′ j. So all matrix entries in the
rectangle must be the same.

In short, the colour classes partition the matrix into monochromatic rectan-
gles, rectangles consisting of only 0’s or only 1’s.

We now colour vertex i ∈ V in the colour of (i, i). Observe that if i and
j have the same colour, then Mij = Mii = 0, and i and j are not adjacent.
So the chromatic number is bounded by the number of colours of the ma-
trix colouring, which equals the number of streams of messages. Since the
messages have length at most CC(A), it follows that

χ(G) ≤ 2CC(A),

which completes our proof �

This lemma allows us to bound the chromatic number by the communica-
tion complexity. Substituting this into the log-rank conjecture gives

log(χ(G)) ≤ P(log rank(A)),

where P is some polynomial in P.

The idea behind this proof will be needed again later on. The chromatic
number χ(G) is the number of monochromatic rectangles needed to cover
the diagonal of the adjacency matrix. This is bounded above by the number
of monochromatic rectangles needed to partition the entire matrix, which
we will call ψ(A).

Definition 2.5 (Partition Number) Let ψ(M) be the minimal number such that
we can partition the matrix into ψ(M) monochromatic submatrices.

Note that ψ is defined for all 01-matrices, not just adjacency matrices.
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Chapter 3

Previous Results

In this chapter we will give a brief timeline of some upper and lower bounds
as well as other related results.

1976 Van Nuffelen conjectures that χ(G) ≤ rank(A) + 1 [18].

1979 Yao introduces communiation complexity ”to focus attention on the in-
herent cost of information transfer associated with a given distributed
computation.” [19].

1982 Mehlhorn and Schmidt prove that the communication complexity of a
matrix A is always at least log2 rank(A) [13].

1988 Fajtlowicz conjectures that χ(G) ≤ rank(A) + 1 based on computa-
tional results by his computer program Graffiti [4].

1988 Lovász and Saks formulate the log-rank conjecture [10].

1989 Alon and Seymour construct a graph with chromatic number 32 and
rank 29, disproving Van Nuffelen’s conjecture [1].

1992 Razborov proves that the chromatic number is supralinear in the rank.
He shows that there exists a sequence of graphs with n5 vertices, chro-
matic number Ω(n4) and rank O(n3) [15]; see section 3.1 for a proof.

1993 Raz and Spieker construct a sequence of matrices whose communica-
tion complexity is superpolynomial in the rank [17].

1994 Kushilevitz writes a manuscript (cited in [14]) proving that the upper
bound on the chromatic number is 2Ω(log rank(A))α

, where α = log3 6.

1996 Kotlov and Lovász prove that graphs with adjacency matrix A contain
at most O(2rank(A)/2) vertices with distinct neighbours [6]. This implies
that χ(G) ≤ O(2rank(A)/2), cf. Theorem 1.3.

1997 Kotlov proves that χ(G) ≤ rank(A)(4/3)rank(A) [5].
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3. Previous Results

2009 Linial and Shraibman find a bound on the discrepancy of a matrix in
terms of its rank [9], which will be a key lemma in the 2013 upper
bound by Lovett.

2012 Ben Sasson, Lovett and Ron-Zewi prove, assuming the Freiman-Ruzsa
conjecture, that CC(A) = O(rank(A)/ log rank(A)) [2].

2013 Lovett proves that CC(A) ≤ O(
√

rank(A) log rank(A)) [11]. We will
discuss this proof in chapter 4.

2014 Rothvoß gives an alternative proof of Lovett’s bound using a hyper-
plane rounding argument [16].

We will now give a proof of the 1992 lower bound by Razborov and a weaker
version of the 1996 upper bound by Kotlov and Lovász.

6



3.1. Lower bound (Razborov 1992)

3.1 Lower bound (Razborov 1992)

In this section we will show following the proof of Razborov [15] that the
upper bound on the chromatic number is supralinear in r by presenting a
sequence of graphs with rank O(n3) and chromatic number Ω(n4).

Let Gn be the graph with vertex set V := [n]5 and edge set

E :=
{

(v, w) ∈ V × V | δ(v, w) /∈
{

(1, 1, 1, 1, 1), (0, 0, 0, 1, 1), (0, 0, 1, 0, 1),

(0, 0, 1, 1, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 0),

(0, 0, 1, 0, 0), (1, 1, 0, 0, 0)
}}

,

where δ is the pointwise delta function, i.e. δ(v, w) = (δ(v1, w1), ..., δ(v5, w5)).

This graph is known as the incomplete extended p-sum (NEPS) of five copies
of Kn with the basis B := {(0, 0, 0, 0, 0), (1, 1, 1, 0, 0), (1, 1, 0, 1, 0), (1, 1, 0, 0, 1),
(1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (0, 0, 1, 1, 1)}; see for example [3].

Claim The adjacency matrix of Gn has rank O(n3).

Proof of Claim Let A be the adjacency matrix of Gn. We will show that A
has at most O(n3) non-zero eigenvalues (counted with multiplicity).

First, we rewrite A in terms of delta functions. To simplify our notation we
use the complementary delta function ηij := 1 − δij. Observe that η is also
the adjacency matrix of the complete graph Kn.

Aijklm,abcde = 1 − δiaδjbδkcδldδme − ηiaηjbηkcδldδme − ηiaηjbδkcηldδme

− ηiaηjbδkcδldηme − ηiaηjbηkcηldδme − ηiaηjbηkcδldηme

− ηiaηjbδkcηldηme − δiaδjbηkcηldηme

Let v1, v2, v3, v4, v5 be some eigenvectors of η with eigenvalues λ1, λ2, λ3, λ4, λ5

respectively. Let v = v1 ⊗ v2 ⊗ v3 ⊗ v4 ⊗ v5 be their tensor product (with en-
tries vijklm = v1

i · v2
j · v3

k · v4
l · v5

m). Multiplying A by v gives

Aijklm,abcdevabcde = ((1 + λ1)(1 + λ2)(1 + λ3)(1 + λ4)(1 + λ5)− 1 − λ1λ2λ3

− λ1λ2λ4 − λ1λ2λ5 − λ1λ2λ3λ4 − λ1λ2λ3λ5 − λ1λ2λ4λ5

− λ3λ3λ5)(v
1
i · v2

j · v3
k · v4

l · v5
m).

This implies that v is always an eigenvalue of A. It follows that the vectors
constructed in this way form an eigenbasis. Note that their eigenvalue is
0, whenever four or five of the λ∗ are −1. Since the spectrum of Kn is
(n − 1,−1,−1, . . . ,−1), we conclude that A has at most
(

5

3

)

(n − 1)3 +

(

5

2

)

(n − 1)2 +

(

5

1

)

(n − 1)1 +

(

5

0

)

(n − 1)0 ≤ 32n3 = O(n3)

non-zero eigenvalues, so rank(A) = O(n3).
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3. Previous Results

Claim The adjacency matrix has chromatic number Ω(n4).

Proof of Claim Consider a colouring of Gn. In independent sets, either both
the first and the second coordinate differ or both the first and the second co-
ordinate are the same. Therefore there are at most n possibilities for the first
two coordinates. Note that when the first two coordinates are equal, the last
three must be different. So there are at most n vertices in the independent
set with the same first two coordinates.

Now suppose there are more than 3n vertices in the independent set. Then
there are at least 4 vertices with the same first and second coordinate. There
is also at least one vertex with different first and second coordinates. This
vertex must share at least one of its last three coordinate with each of the 4
vertices. That is a contradiction.

Therefore independent sets have size at most 3n. So the chromatic number
is at least n5/3n = n4/3 = Ω(n4). �
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3.2. Upper bound

3.2 Upper bound

Kotlov and Lovász [6] proved that for a graph G with adjacency matrix A

χ(G) ≤
√

2
rank(A)

by showing that twin-free graphs of rank r have at most this many vertices.
A twin-free graph is a graph whose adjacency matrix does not contain two
equal rows. Note that this is sufficient, since we can give twin-vertices the
same colour. In this section we will prove a slightly weaker result.

Theorem 3.1 Let G be a graph whose adjacency matrix has rank r ≥ 1. Then

χ(G) ≤ 16r2r/2.

Proof Let Gn be the graph with vertex set V = {1, 2, 3, 4}n and edge set

E =

{

(u, v) ∈ V × V
∣

∣

n

∑
i=1

Auivi
≡ 1 mod 2

}

, where A =









0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0









.

Let G′
n be the graph consisting of two copies of Gn with the edges be-

tween both copies complemented; more formally G′
n = (V ′, E′), where

V ′ = {0, 1} × V and

E′ =

{

(u, v) ∈ V ′ × V ′ ∣
∣ u1 + v1 +

n+1

∑
i=2

Auivi
≡ 1 mod 2

}

.

We will now prove the following two lemmas:

• G′
n has chromatic number χ(G′

n) ≤ 8n2n.

• Gn contains all twin-free graphs of rank ≤ 2n − 1 as induced sub-
graphs.

Lemma 3.2 χ(G′
n) ≤ 8n2n for all n ∈ N.

Proof We will first prove by induction on n that G′
n is transitive and then

give a random colouring which colours G′
n in 8n2n colours with positive

probability.

Definition 3.3 (Transitive Graph) A graph G = (V, E) is transitive, if for all
u, v ∈ V there exists an automorphism of G which maps u to v.

Induction Basis The graph G′
0 (two vertices and a single edge) is transitive.

Induction Hypothesis The graph G′
k is transitive for some k ∈ Z≥0.

9



3. Previous Results

Induction Step Let A be the adjacency matrix of Gk and let B := J4k −
A. Then C :=

(

A B
B A

)

is the adjacency matrix of transitive graph G′
k. The

adjacency matrix of G′
k+1 is given below.

Ak+1 =

























A A A A B B B B
A A B B B B A A
A B A B B A B A
A B B A B A A B
B B B B A A A A
B B A A A A B B
B A B A A B A B
B A A B A B B A

























Applying the permutation
[

1 5 2 6 3 7 8 4
1 2 3 4 5 6 7 8

]

to these 8 sets of 4k vertices gives
the following adjacency matrix of an automorphism of G′

k+1.

























A B A B A B B A
B A B A B A A B

A B A B B A A B
B A B A A B B A

A B B A A B A B
B A A B B A B A

B A A B A B A B
A B B A B A B A

























=









C C C D
C C D C
C D C C
D C C C









.

Rewriting this matrix in terms of C and D := J2·4k − C =
(

B A
A B

)

shows that
G′

k+1 is transitive as well.

Conclusion G′
n is transitive for all n ∈ Z≥0.

Note that {0} × {1, 2}n is an independent set in G′
n. Because of transitivity,

we can pick 2 · 4n independent sets of size 2n such that each vertex is in
exactly 2n of them. We sample 8n2n of these independent sets uniformly at
random. By the union bound, the probability that there is a vertex that is
contained in none of the sampled independent sets is at most

2 · 4n · (1 − 2−(n+1))(8n2n) ≤ 2 · 4n · exp(−4n) < 1.

Therefore there exist 8n2n independent sets which cover all vertices of G′
n.

Hence χ(G′
n) ≤ 8n2n for all n ∈ N. �

Lemma 3.4 The graph Gn contains all twin-free graphs of rank at most 2n − 1 as
induced subgraphs.

Proof The proof of this lemma consists of three parts:

1. The graph Gn contains all graphs of order 2n− 1 as induced subgraphs.

10



3.2. Upper bound

2. The graph Gn contains all twin-free graphs with an adjacency matrix
of rank 2n − 1 over F2 as induced subgraphs.

3. For all 01-matrices A we have rankF2
(A) ≤ rankR(A).

Claim 1 Gn contains all graphs of order 2n − 1 as induced subgraphs.

We will prove by induction on n ∈ N that Gn\ v1 contains all possible
induced subgraphs of order 2n − 1, where v1 = {1}n.

Induction Basis G1\ v1 = K3 contains all possible induced subgraphs of
order 1.

Induction Hypothesis Gk\ v1 contains all possible induced subgraphs of
order 2k − 1.

Induction Step Let H be a graph order 2k + 1, where k ∈ N. We will prove
that H is an induced subgraph of Gk+1\ v1. We distinguish two cases: H is
empty and H contains at least one edge.

Case 1: H = E2k+1.
We know that {1, 2}k+1 is an independent set in Gk+1. Since 2k+1 − 1 ≥ 2k+ 1
for all k ∈ N, it follows that H is an induced subgraph of Gk+1\ v1.

Case 2: H contains at least one edge.
Let (u, v) be an edge in H. We partition the other vertices into four sets:

• The set W of vertices which are adjacent to neither u nor v.

• The set X of vertices which are adjacent to u, but not to v.

• The set Y of vertices which are adjacent to v, but not to u.

• The set Z of vertices which are adjacent to both u and v.

We define a new graph H′ on the vertices V[H\{u, v}] as follows. We take
all edges from E[H\{u, v}] and then complement the edges between the
sets X, Y and Z. That is, for all e ∈ (X × Y) ∪ (Y × Z) ∪ (Z × X) we have
e ∈ H′ ⇐⇒ e /∈ H, while the other edges remain the same.

Since H′ contains only 2k − 1 vertices, it is an induced subgraph of Gk\ v1.
Thus there exists an injective homomorphism f which maps H′ to Gk\ v1.
Now we define a second function which maps H to Gk+1\ v1 as follows.

g(x) =











































{3} × {1}k, if x = u

{2} × {1}k, if x = v

{1} × f (x), if x ∈ W

{2} × f (x), if x ∈ X

{3} × f (x), if x ∈ Y

{4} × f (x), if x ∈ Z

11



3. Previous Results

Note that g is injective and that its range does not contain {1}k+1. Moreover,
it can be checked that it preserves the edges of H. Therefore H is an induced
subgraph of Gk+1\ v1.

Conclusion Gn\ v1 contains all possible induced subgraphs of order 2n − 1.

Claim 2 The graph G′
n contains all twin-free graphs H with rankF2

(H) ≤ 2n − 1
as induced subgraphs.

Let H be a twin-free graph with adjacency matrix A of rank r ≤ 2n − 1. We
can find r vertices in H, whose columns span the column space of A. Let
H′ be the subgraph corresponding to these vertices. We know that H′ is an
induced subgraph of Gn by Claim 1. Note that the columns of the adjacency
matrix of Gn form a group under addition over F2 isomorphic to (C2 ×C2)n.
In particular, it is closed. So the adjacency matrix of Gn contains all linear
combinations of its own columns. Considering the vertices corresponding to
the appropriate linear combinations, we obtain H as an induced subgraph
of Gn. Observe that we need H to be twin-free to ensure that every vertex of
H corresponds to a different linear combination of columns and hence to a
different vertex in Gn.

Claim 3 For all 01-matrices A it holds that rankF2
(A) ≤ rankR(A).

Let A have rank r over the reals and r′ over F2. Suppose for the sake of
contradiction that r′ > r. We pick r′ linearly independent columns of A
with respect to F2. They form a matrix B of rank at most r over the re-
als. Using Gaussian elimination we can find a non-zero rational solution to
Bx = 0. Multiplying x by the smallest common multiple of the denomina-
tors of its entries and dividing it by the greatest common divisor of their
numerators, we obtain an integer solution with at least one odd entry. Note
that this is a non-zero solution of the equation with respect to F2. This is
a contradiction, because the columns of B are linearly independent over F2.
Therefore r′ ≤ r.

It follows from Claim 2 and Claim 3 that Gn contains all twin-free graphs of
rank 2n − 1 over R as induced subgraphs. �

Combining both lemmas, we see that twin-free graphs of rank ≤ 2n− 1 have
chromatic number at most 8n2n. Again, since twin-vertices can be given the
same colour and don’t reduce the rank, all graphs of rank r have chromatic
number at most 16r2r/2. �
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Chapter 4

Lovett’s Upper Bound

In this chapter we adapt the proof of the upper bound of the communi-
cation complexity by Lovett [12] to give an upper bound on the chromatic
number of a graph. Recall that ψ(A) is the minimal number of rectangles
needed to partition 01-matrix A into monochromatic rectangles. We now
define Ψ(r, N) to be the maximal value of ψ over all possible 01-matrices of
rank ≤ r and size n × m ≤ N.

Theorem 4.1 Let A be a 01-matrix of rank r ≥ 1, then ψ(A) ≤ 4r1000
√

r.

Note in particular that picking A to be an adjacency matrix implies that

χ(A) ≤ ψ(A) ≤ 4r1000
√

r.

Before proving theorem 4.1 we give an outline of the proof.

1. We first bound a parameter of 01-matrix A of rank r, called discrepancy
(see section 4.1 for the definition) and denoted d(A), below by 1/12

√
r.

2. We use duality to obtain a distribution of rectangles in which each cell
of A containing 1 is at least 2d(A)/3 more likely to appear than each
cell containing 0, or vice versa.

3. We consider the intersection of independently sampled rectangles from
this distribution. We show that there exists such an intersection rect-
angle which is both sufficiently large and ‘almost-monochromatic’. By
almost-monochromatic, we mean that all but a fraction of 1/(4r) of its
entries are equal.

4. We prove using linear algebraic techniques that each almost-monochro-
matic rectangle contains a fully monochromatic subrectangle of at least
1/8 its size.

13



4. Lovett’s Upper Bound

5. Given a sufficiently large monochromatic rectangle, we can split the
matrix A into two submatrices: one of which has rank at most r+1

2

and one of which has size at most N − N
288 r−50

√
r. This gives us the

inequality

Ψ

(

r + 1

2
, N

)

+ Ψ

(

r, N − N

288
r−50

√
r

)

.

6. Lastly, we use the induction on N and ...

7. ... induction on r to prove that

Ψ(r, N) ≤ 4r1000
√

r

for some constant D.

In the rest of the chapter we will discuss every step in detail.
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4.1. Discrepancy

4.1 Discrepancy

Let M be a {±1}-matrix with rows indexed by X and columns indexed by Y
and σ a matrix of non-negative reals such that ∑i∈X,j∈Y σij = 1. We can think
of σ as a probability distribution on X × Y, giving weights to the entries of
M. We define a function Wσ : P(X)×P(Y) → [−1, 1] to calculate the sum
of the entries in a rectangle with respect to these weights σ

Wσ(A × B) = ∑
i∈A,j∈B

σij Mij.

The discrepancy with respect to a particular distribution σ is defined as the
maximum of |Wσ| over all possible rectangles.

d(M, σ) = max
A⊂X,B⊂Y

|Wσ(A × B)|

The overall discrepancy of the matrix M defined as the minimum of d(M, σ)
over all possible distributions σ. This gives the following formula.

d(M) = min
σ

max
A⊂X,B⊂Y

∣

∣

∣

∣

∣

∑
i∈A,j∈B

σij Mij

∣

∣

∣

∣

∣

In this section we will prove the following lemma from [9] and [8].

Proposition 4.2 For all {±1}-matrices M of rank r we have d(M) ≥ 1/8
√

r.

We will use the following notation.

• Let xi be the i-th row of X and yj the j-th column of Y.

• Let γ2(M) := minX,Y:XY=M maxi,j ‖xi‖2‖yj‖2.

• Let sp(XY) be the sign pattern matrix of XY, i.e. sp(XY)ij = sign(∑k XikYkj).

• Let m(M) := maxX,Y:sp(XY)=M mini,j
|xi ·yj|

‖xi‖2‖yj‖2
.

• Let KG < 2 denote Grothendieck’s constant. It appears in Grothendieck’s
inequality, which is stated and used in the third part of the proof (see
[7] for a proof of this upper bound).

• Let ‖Z‖N1→N2
:= max{‖Zv‖N2

| ‖v‖N1
= 1} be the operator norm.

We break up the proof into three steps.

1. r ≥ γ2(M)2

2. γ2(M) ≥ 1/m(M)

3. m(M) ≤ 4KGd(M)
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4. Lovett’s Upper Bound

Step 1

First, note that

max
i

‖xi‖2 = ‖X‖l2→l∞ and max
j

‖yj‖2 = ‖Y‖l1→l2 ,

This way we can rewrite

γ2(M) = min
X,Y:XY=M

‖X‖l2→l∞‖Y‖l1→l2

≤ min
X,Z:XZ=I

‖X‖l2→l∞‖ZM‖l1→l2

≤ min
X,Z:XZ=I

‖X‖l2→l∞‖Z‖l∞→l2‖M‖l1→l∞

= min
X,Z:XZ=I

‖X‖l2→l∞‖Z‖l∞→l2 , since M is a ±1-matrix.

We will now use John’s theorem.

Theorem 4.3 (John’s Theorem) For any norm E on an r-dimensional vector space,
there exist matrices X and Z such that XZ = I and

‖X‖l2→E‖Z‖E→l2 ≤
√

r.

Choosing E to be the l∞ norm on the rank(M)-dimensional vector space
range(M), we get γ2(M) ≤ √

r.

Step 2

We will now manipulate the definitions of γ2 and m to prove that γ2(M) ≥
1/m(M).

γ2(M) = min
X,Y:XY=M

max
i,j

‖xi‖2‖yj‖2

= min
X,Y:XY=M

max
i,j

‖xi‖2‖yj‖2

|xi · yj|
, since xi · yj = Mij ∈ {±1}

≥ min
X,Y:sp(XY)=M

max
i,j

‖xi‖2‖yj‖2

|xi · yj|

=

(

max
X,Y:sp(XY)=M

min
i,j

|xi · yj|
‖xi‖2‖yj‖2

)−1

= m(M)−1
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4.1. Discrepancy

Step 3

The next step is an application of Grothendieck’s inequality.

Theorem 4.4 (Grothendieck’s Inequality) There is a universal constant
KG < 2 such that for every real matrix Bij and every k ≥ 1,

max
{

∑ Bijui · vj|∀i, j ui, vj ∈ R
k
}

≤ KG max
{

∑ Bijε iδj|∀i, j ε i, δj ∈ {±1}
}

.

Let σ be any probability measure on X × Y. Then the following holds.

m(A) = max
X,Y:sp(XY)=M

min
i,j

|xi · yj|
‖xi‖2‖yj‖2

= max
X,Y:sp(XY)=M

min
i,j

Mij
xi

‖xi‖
· yj

‖yj‖
, since sp(XY) = M

≤ max
X,Y:sp(XY)=M

∑
i,j

σij Mij
xi

‖xi‖
· yj

‖yj‖
, since ∑

i,j

σij = 1

≤ KG max
ε,δ

∑
i,j

σij Mijε iδj by Grothendieck’s inequality

= KG max
A,B



 ∑
i∈A,j∈B

σij Mij − ∑
i∈A,j∈BC

σij Mij − ∑
i∈AC ,j∈B

σij Mij + ∑
i∈AC ,j∈BC

σij Mij





≤ 4KG max
A,B

∣

∣

∣

∣

∣

∑
i∈A,j∈B

σij Mij

∣

∣

∣

∣

∣

= 4KGd

Conclusion

Combining the three inequalities we conclude

d(M) ≥ m(M)

4KG
≥ 1

4KGγ2(M)
≥ 1

4KG

√
r
>

1

8
√

r
.

01-Matrices

As we are working with 01-matrices instead of {±1}-matrices, we define
the discrepancy of 01-matrix A to be the discrepancy of the corresponding
{±1}-matrix M = 2A − J, where J is the all-ones matrix. Since the rank
of A and M differ by at most 1, we can bound the discrepancy of A with
rank(A) ≥ 1 by

d(A) ≥ 1

8
√

rank(M)
≥ 1

8
√

rank(A) + 1
≥ 1

8
√

2 rank(A)
≥ 1

12
√

rank(A)
.
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4. Lovett’s Upper Bound

4.2 Duality

In this section we will prove the following lemma.

Proposition 4.5 There exists a distribution of rectangles ρ such that

PR∼ρ[(x, y) ∈ R] ≥ PR∼ρ[(x′, y′) ∈ R] + 2d(A)/3

for all (x, y) and (x′, y′) with Axy = 1 and Ax′y′ = 0.

Proof By the definition of discrepancy, there exists a rectangle R = S × Q
with |Wσ(R)| ≥ d(A) for each distribution of weights σ, where Wσ is defined
with respect to M = 2A − J as in section 4.1. We know that

Wσ(X × Y) = Wσ(S × Q) + Wσ(S × QC) + Wσ(S
C × Q) + Wσ(S

C × QC).

Thus if Wσ(X × Y) = 0, then there is always a rectangle R′ with

Wσ(R′) ≥ d(A)/3.

Since ER∼ρ[Wσ(R)] is linear in σ and ρ, Von Neumann’s Minimax Theorem
implies

max
ρ

min
σ

ER∼ρ[Wσ(R)] = min
σ

max
ρ

ER∼ρ[Wσ(R)]

= min
σ

max
R

Wσ(R)

≥ min
σ

d(A)/3

= d(A)/3,

where the minimum is taken over all σ with Wσ(X ×Y) = 0. Therefore there
is a ρ such that

ER∼ρ[Wσ(R)] ≥ d(A)/3

for all distributions σ with Wσ(X × Y) = 0. One such distribution σ is
the one which assigns probability 1/2 to both of (x, y) and (x′, y′), where
Axy = 1 and Ax′y′ = 0. This implies that

PR∼ρ[(x, y) ∈ R] · 1

2
· 1 + PR∼ρ[(x′, y′) ∈ R] · 1

2
· (−1) ≥ d(A)/3,

as required. �

This lemma shows that there is a distribution of rectangles in which the
cells containing 1 are 2d(A)/3 more likely to appear than the cells contain-
ing 0. By symmetry, there also exists a distribution of rectangles in which
the cells containing 0 are 2d(A)/3 more likely to appear than the cells con-
taining 1. In the next section we will amplify this result to find an almost-
monochromatic rectangle.
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4.3. Almost-monochromatic rectangle

4.3 Almost-monochromatic rectangle

In this section we prove the following proposition.

Proposition 4.6 Let A be a 01-matrix with N entries, discrepancy d and at least

as many 1’s as 0’s. Then A contains a rectangle of size at least N
36 r−50

√
r, in which

the proportion of 0’s is at most 1/(4r).

Proof If all entries are 1, the proposition holds trivially, so suppose this is
not the case.

We pick ρ as in Theorem 4.5. Let p be the minimum probability that (x, y)
with Axy = 1 is in R, and q the maximum probability that (x′, y′) with
Ax′y′ = 0 is in R. Then p ≥ q + 2d/3.

Since there are more 1’s than 0’s and 1’s are a bit more likely to be in-
cluded, we expect the rectangles to contain slightly more 1’s than 0’s. How-
ever, since we are looking for almost entirely monochromatic rectangles,
we need something much stronger. The trick is to look at the intersection
R = R1 ∩ ...∩ Rt of multiple rectangles independently sampled from ρ. That
way we amplify ratio of 1’s to 0’s in R.

Now each 1 is included with probability at least pt and each 0 is included
with probability at most qt. We define T to be the number of 1’s in R minus
1/ε times the number of 0’s in R. Note that if E[T] ≥ M, then there is a
rectangle with at least M entries, at most an ε-fraction of which are 0.

E[T] ≥ N(pt − qt/ε)

≥ Npt(1 − (1 − 2d/(3p))t/ε)

Now it is just a question of finding the right t ∈ N for the required param-
eters M and ε = 1/(4r). Picking t an integer satisfying:

ln(ε/2)/ ln(1 − 2d/(3p)) ≤ t ≤ ln(ε/2)/ ln(1 − 2d/(3p)) + 1,

gives us

E[T] ≥ 1

2
Npt ≥ p

2
N exp

(

ln(p) ln(ε/2)

ln(1 − 2d/(3p))

)

≥ p

2
N exp (3p/(2d) · ln(p) ln(8r))

≥ d

3
N exp (− ln(8r)/d)

≥ N

36
√

r
· (8r)−12

√
r ≥ N

36
r−50

√
r,

which completes our proof. �

Note that we can similarly prove this for matrices with more 0 entries than

1 entries. Hence, any matrix contains a rectangle of size at least N
36 r−50

√
r in

which all but a fraction of at most 1/(4r) entries are equal.
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4. Lovett’s Upper Bound

4.4 Monochromatic rectangle

In the previous section we have seen that that every 01-matrix M of rank r
and size N contains a submatrix MXY of size |X × Y| at least

N

36
r−50

√
r

in which at most |X × Y|/4r entries are 0 or in which at most |X × Y|/4r
entries are 1. In this chapter we will show that MXY contains monochromatic

submatirx of size at least N
288 r−50

√
r.

Lemma 4.7 Let M be a 01-matrix of rank r in which at most |X × Y|/4r entries
are 0. Then there exist A ⊂ X, B ⊂ Y with |A × B| ≥ |X × Y|/8 and MAB

monochromatic.

Proof Let A correspond to the rows of MXY in which at most |Y|/2r entries
are 0. There are at least |X|/2 such rows, since the total number of 0’s in the
matrix is bounded above by |X × Y|/4r. So |A| ≥ |X|/2.

We pick a largest subset A′ ⊂ A such that the corresponding row vectors
form a linearly independent set. The size of this set equals rank(MAY) ≤
rank(MXY) = r.

In each of these rows 0 appears at most |Y|/2r times. So there are at least
|Y| − r|Y|/2r = |Y|/2 columns that have a 1 in each row corresponding to
A′. Let’s call the set corresponding to those columns B. We have |B| = |Y|/2.

Since all rows of A are linear combinations of rows corresponding to A′,
each of A × B either contains only 1’s or only 0’s. Taking only the rows with
the most frequent symbol, we can get a rectangle of size at least

|A × B|/2 ≤ |X × Y|/8,

as required. �

Note that a similar proof works in the case that at most |X × Y|/4r entries
of the matrix are 1.
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4.5. Recursion

4.5 Recursion

In the previous sections we have seen that every 01-matrix M of rank r and
size N contains a monochromatic rectangle of size at least

N

288
r−50

√
r.

We will now use this fact to find a recursive formula for Ψ(r, N)

Let M be a 01-matrix of rank r and size N such that ψ(M) = Ψ(r, N). We
call the set of rows X and the set of columns Y. Let MAB be a largest
monochromatic rectangle in M.

First we pick rank(MAY) linearly independent rows from MAY. We then
extend this to a basis of the rows of M by picking r − rank(MAY) more rows
from M. Restricting these rows to B gives a spanning set of MXB. Since
all rows from MAB are monochromatic, this spanning set contains at most
r − rank(MAY) + 1 linearly independent rows. Hence

rank(MAY) + rank(MXB) ≤ r + 1.

Without loss of generality we assume that rank(MAY) ≤ r+1
2 .

We can now split the matrix into two submatrices: one with small rank MAY

and one with small size MACY. Colouring M will take at least as much
colours as colouring MAY and MACY separately. This yields the following
inequalities.

ψ(M) ≤ ψ(MAY) + ψ(MACY)

Ψ(r, N) ≤ Ψ

(

r + 1

2
, N

)

+ Ψ

(

r, N − N

288
r−50

√
r

)
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4. Lovett’s Upper Bound

4.6 Induction on N

We will use the recursive formula found in the previous section to prove by
induction on N that

Ψ(r, N) ≤ 288r50
√

r log N · Ψ

(

r + 1

2
, N

)

+ 4. (4.1)

for all real numbers r ≥ 1, N > 0.

Induction Basis

Ψ(r, N) = 0 ≤ 4 = 288 · r50
√

r · log N · Ψ
(

r+1
2 , N

)

+ 4 for all 0 < N < 1.

Ψ(r, N) = 1 ≤ 4 ≤ 288 · r50
√

r · log N · Ψ
(

r+1
2 , N

)

+ 4 for all 1 ≤ N < 2.

Induction Hypothesis For some k ∈ N≥2 and all real numbers r and N such

that r ≥ 1 and 0 < N < k we have Ψ(r, N) ≤ 288r50
√

r log N · Ψ
(

r+1
2 , N

)

+ 4.

Induction Step Let k ≤ N < k + 1. There exists a matrix M with rank(M) =
s ≤ r, size(M) = l ≤ k and ψ(M) = Ψ(r, N). The recursive formula gives us

Ψ(r, N) = ψ(M) ≤ Ψ(s, l) ≤ Ψ

(

s + 1

2
, l

)

+ Ψ

(

s, l − ls−50
√

s

288

)

.

We now use induction hypothesis for N = l − ls−50
√

s

288

Ψ

(

s, l − ls−50
√

s

288

)

≤ 288s50
√

s log

(

l − ls−50
√

s

288

)

Ψ

(

s + 1

2
, l − ls−50

√
s

288

)

+ 4

Since Ψ in increasing and log
(

l − ls−50
√

s

288

)

≤ log l − s−50
√

s

288 , we have

Ψ(r, k) ≤ 288r50
√

r log k · Ψ

(

r + 1

2
, k

)

+ 4.

Conclusion We conclude that

Ψ(r, N) ≤ 288r50
√

r log N · Ψ

(

r + 1

2
, N

)

+ 4.

for all real numbers r ≥ 1 and N > 0.
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4.7. Induction on r

4.7 Induction on r

In this section we will show by induction on r that

Ψ(r, N) ≤ 4r1000
√

r

for all r, N ∈ N.

Induction Basis Ψ(1, N) ≤ 4 = 4 · 11000
√

1 and Ψ(2, N) ≤ 6 = 4 · 21000
√

2.

Induction Hypothesis Ψ(s, N) ≤ 4s1000
√

s for all 1 ≤ s ≤ r.

Induction Step Let r ≥ 3. As we have seen before, a matrix of rank r can
have at most 2r distinct rows, so Ψ(r, N) ≤ Ψ(r, 2r+1). Substituting r and
2r+1 into the equation obtained in section 4.6 gives

Ψ(r, N) ≤ Ψ(r, 2r+1)

≤ 288r50
√

r(r + 1)Ψ

(

r + 1

2
, 2r+1

)

+ 4

≤ 288r50
√

r(r + 1) · 4

(

r + 1

2

)1000
√

(r+1)/2

+ 4

≤ 4r1000
√

r

Conclusion Therefore
Ψ(r, N) ≤ 4r1000

√
r

for all r, N ∈ N.
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Chapter 5

Conclusion

We have seen some bounds on the chromatic number in terms of the rank of
its adjacency matrix, sometimes with a proof included. In this final chapter
we will make some remarks from [11] and [12].

5.1 Communication complexity

The proof of the bound on the communication complexity

CC(A) = O
(√

r log(r)
)

given in [11] is very similar to the one we have seen in chapter 4. We still
use monochromatic rectangles to split the matrix, but now we also build a
protocol tree according to these splits. The leafs of this tree correspond to

the final partition of the matrix into at most 4r1000
√

r rectangles. Rebalanc-

ing the tree to one of depth O
(

log
(

4r1000
√

r
))

gives a protocol of length

O(
√

r log r).

5.2 Equivalence to monochromatic rectangles

Every graph G on n vertices with adjacency matrix A of rank r contains an
independent set of size at least n/χ(G). Independent sets correspond to all-
zero rectangles in the adjacency matrix. So if the log-rank conjecture is true,
then there exists a polynomial P such that every matrix of rank r contains
a monochromatic rectangle of size 2−P(log(r))n2. Conversely, if every matrix
contains a monochromatic rectangle of size 2−P(log(r))n2, then we can use
methods similar to those used in chapter 3 to show that the logarithm of
the chromatic number is polylogarithmic. This tells us that the existence of
these large monochromatic rectangles is both necessary and sufficient.
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